搜  索
研究进展

新闻中心
世界首条量子保密通信干线顺利开通、洲际量子通信成功实施
2017-09-29
国家量子保密通信“京沪干线”项目通过总技术验收
2017-09-06

高等学校创新能力提升计划
中国科学技术大学
南京大学
中科院上海技术物理研究所
中科院半导体研究所
国防科学技术大学
中国科大在量子输运、量子等离激元研究领域取得重要新进展
( 2017-10-19 )

  近期,中国科大合肥微尺度物质科学国家实验室国际功能材料量子设计中心与中科院强耦合量子材料物理重点实验室曾长淦教授研究组在低维量子输运领域取得系列新进展,发现电子-等离激元耦合对石墨烯电子输运过程中的量子相干性有极大的增强效应,并实现氧化物界面二维电子气自旋轨道耦合的光学调控。相关研究成果相继发表在权威期刊《Phys. Rev. Lett.》和《Nano Lett.》上。

 

  在固体中运动的电子与不同准粒子(声子、极化子等等)之间的多体耦合作用会导致一系列重要的物理效应。例如,电子-声子相互作用可以使自旋相反的电子形成库珀对从而引发超导。另一方面,等离激元是大量电子集体相干振荡形成的准粒子。近年来等离激元的量子特性陆续被发现,例如,以往的实验揭示量子纠缠在经历了从光子到等离激元再到光子的转化过程后仍然得以保持。一个核心问题是,等离激元是否会影响以及如何影响电子的量子输运特性?该研究团队与台湾清华大学果尚志教授研究组、中国科大张振宇教授研究组等合作,对这一问题进行了深入探索。

 

  该研究团队制备了石墨烯与纳米金颗粒阵列的复合体系,以激光辐照来激发金颗粒的局域等离激元,再通过金颗粒与石墨烯之间的近场耦合激发石墨烯的等离激元。随后以弱局域化量子输运作为有效探针,发现激发等离激元能够极大增强石墨烯电子的量子相干性,其量子相干长度甚至可以增加到原来的3倍。进一步,微观唯象理论分析表明,电子-等离激元耦合能够有效抑制破坏量子相干的非弹性散射,如图1所示。这种电子-等离激元耦合对量子相干性的增益,为探索准粒子间相互作用从而实现非平庸量子效应和设计量子器件开辟了新的视野。该研究成果发表在《物理评论快报》上[Phys. Rev. Lett. 119, 156803 (2017)],程广珲博士、秦维博士和林孟贤博士为文章共同第一作者,曾长淦教授和魏来明特任副研为共同通讯作者。

 

  该工作得到审稿人的高度评价:“我发现这一实验非常有趣,富有创新性。这一主题属于输运、等离激元、非平衡物理、以及多体物理的交叉领域,因此毫无疑问值得在物理评论快报上发表(I find this experiment very interesting and innovative. The topic is at the crossroads of transport, plasmonics, non-equilibrium physics, and many-body physics, and thus definitely belongs to the Physical Review Letters)”。

 

图1. 电子-等离激元耦合增强电子的量子相干性的原理示意图

 

  过渡金属氧化物异质界面由于电荷、自旋、轨道和晶格等多自由度之间的复杂耦合展现出丰富的物理现象,例如磁性、超导、磁性和超导共存、以及Rashba自旋轨道耦合。自旋电子学以电子自旋作为信息载体,而Rashba自旋轨道耦合可以有效操控电子自旋,从而在自旋电子学中扮演重要角色。以往对界面二维电子气Rashba自旋轨道耦合都是通过栅电压来调控。

 

  曾长淦教授研究组和中国科学院上海技术物理研究所俞国林研究员课题组合作,另辟蹊径地通过可见光和红外光辐照来调节费米面位置,进而有效调控基于SrTiO3界面(LaAlO3/SrTiO3和LaVO3/SrTiO3)二维电子气的自旋轨道耦合强度。这种光场调控具有非接触、非易失和可擦除等显著优点。通过光调控甚至还实现了界面量子输运从弱局域化到弱反局域化的转变,即从电子的量子相长干涉到量子相消干涉的转变,如图2所示。这一研究成果为设计光控自旋器件以及探索光诱发非平庸量子态提供了新思路。该研究发表在《纳米快报》上(Nano Lett. DOI: 10.1021/acs.nanolett.7b02128)。

 

光辐照调控LaAlO3/SrTiO3界面弱局域化到弱反局域转变的原理示意图

 

  上述研究工作得到了国家自然科学基金委、科技部、教育部、安徽省自然科学基金委以及量子信息与量子科技前沿协同创新中心的资助。

 

  论文链接: 

  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.156803 

  http://pubs.acs.org/doi/10.1021/acs.nanolett.7b02128

 

(量子信息与量子科技前沿协同创新中心)


Copyright 2011-2016
中国科学技术大学、南京大学、上海技术物理研究所、半导体研究所、国防科学技术大学
2011 量子信息与量子科技前沿协同创新中心
All Rights Reserved    皖ICP备12020656